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We find the asymptotic behavior of general Mayer 2-graphs (Mayer graphs 
with two root points), which occur in the theory of ionized systems. This 
problem arises when one wants to compute corrections to the Debye length 
for large values of the plasma parameter. For a given 2-graph F(r) with 
Debye--Hfickel lines e-r/r, we prove the inequalities Cmr-ae -At <~ F(r) ~< 
F(ro)C~r3k-~e-a', for any r >~ ro, and where C,, and CM are positive and 
finite constants which depend only on F. These bounds are finite whenever 
F(r) is not infinite everywhere. The integers l, k, and h denote, respectively, 
the number of lines of the graph I', its number of field points~ and its local 
line connectivity (the maximum number of chains linking the root points, 
which have no line in common). From this result, we deduce that the simple 
irreducible 2-graphs dominant at large distances decay exponentially like 
e - '  and have an isthmus between the root points (an isthmus is a line whose 
deletion separates the graph into two disjoint components, each one con- 
taining a root point). We prove also that 2-graphs that have a number of 
lines l > 3k + A are infinite. We exhibit simple, irreducible prototypes 
satisfying this condition, for any k ~> 6. This implies that the Abe-Meeron 
theory of ionized gases as applied to a classical plasma is not free from 
divergences. Finally, we extend the preceding results to 2-graphs with lines 
fL = (e-'/r) ~L, with kL real positive. We prove that they still decay ex- 
ponentially like e-at, where ,~ is now the maximal flow in a network associ- 
ated to 1-' by assigning the capacity kL to each line L. 

KEY WORDS: Mayer graphs; Laplace integral; inequalities; local line 
connectivity; max-flow, rain-cut theorem, 

1. I N T R O D U C T I O N  

The one-component  plasma (OCP) consists of charged, classical point  

particles of a given sign in a un i form neutral izing background.  The Debye 

1 Centre de recherches sur la physique des hautes temperatures, CNRS, Orleans, France. 
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length AD has a fundamental  importance in the study of  this system. It  is 
defined as - l i m r o  ~(1/r) In [h(r)[, where h(r)  is the radial correlation function, 
and represents the distance at which a given charge begins to be screened by 
charges of  opposite sign. For  dilute plasmas {small values of  the plasma 
parameter  ~ = [4*rp(e2/4~reokT)3]iI2}, the Debye length is equal to ADo= 
(%kT/pe2) ~/2, where p is the density o f  the system and T is its temperature. 
For  dense plasmas (large values of  E), it has been shown (~) that  

AD = A~~ + e(ln 3)/8 + ..-1-1 (1) 

under the hypothesis that  the long-range behavior  of  the potential o f  mean 
force w(r)  is given by the sum of  chains made only o f  Debye-Hiickel  lines 
b(r)  and A b e - M e e r o n  lines B(r) .  (2'3~ These are defined by the identities 

b(r) = e-~/r (2) 

B(r )  = e -~b(~ - 1 + Eb(r) (3) 

To prove this hypothesis, a first impor tant  step consists in finding the 
behavior at large distances of  2-graphs (or Mayer  graphs with two root  
points) with Debye-Hiickel  lines b(r). This is the problem we investigate here. 

In  their important  work,  Del Rio and De Witt  (1) have remarked that  the 
particular 2-graphs made of  ~ chains in parallel (without points  in common)  
decay exponentially like e -~r [that is, one has limr_.o~(1/r)In r(r) =-~]. 
Here, we prove that  any given 2-graph decays exponentially like e -at, where 
A stands for  the maximum number  o f  chains linking the root  points, which 
have no line in common.  2 This problem has also been investigated by Deutsch 
et al. for general 2-graphs. (7,8~ But their p roof  is incorrect a and their 
method,  even if it could be corrected, could only give upper bounds,  for a 

2 These results were presented in detail in the course of a set of seminars given at the 
Laboratoire de physique et optique corpusculaire, Universit6 Paris V. (4) 

3 Deutsch et al. (a) bound a given 2-graph by iterating the following algorithm. First, 
they choose a line, say (3, 4). Then they split the domain of integration into two parts, 
one where r34 > ro, and the other where r34 ~< r0, where ro is defined by the equality 
f(ro) = 1. The integral in the first domain is bounded by the 2-graph obtained by 
deleting the line (3, 4), because one has fa4 < 1. Then, they evaluate the integral in the 
second domain by assuming that f3s ~ f4j for any i, when ra4 < to. This enables them 
to replace faj by f4j in the integral (this is their pinching procedure). But this is not 
possible, because the condition r34 < ro does not imply j~j ~ f3j (one can have f4j = 
+ oe and f3j = 1). This would be true only if one had, moreover, r3j >> ro. So, still 
other terms ought to be taken into consideration, the decay of which is not known. 
Finally, nothing ensures that their pinching procedure gives, for a given finite 2-graph, 
"bounds" (that is, the quantities obtained from a given graph by the pinching pro- 
cedure) that are finite. On the contrary, our upper bound (31) is finite whenever r(r)  
is not infinite everywhere (i.e., is finite at least at one point). 
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given 2-graph,  tha t  decay exponent ia l ly  like e -~r, where K is the m a x i m u m  
number  of  chains wi thout  poin ts  in common .  4 

This pape r  is organized  as follows. In  Sect ion 2, we give some definit ions 
and nota t ions ,  together  with a useful homogene i ty  p rope r ty  o f  2-graphs with 
Debye -Hi i cke l  lines e-r /r .  In  Sect ion 3, we rewrite a 2-graph in the fo rm of  
an integral  of  Laplace ' s  type.  This enables  us to ob ta in  its a sympto t i c  
behav ior  s imply by finding the min imum of  the quant i ty  hr = ~ L ~ r  ]Rz] 
(which is the sum of  the distances between pairs  of  poin ts  l inked by a line of  
F). This m in imum is c o m p u t e d  in Sect ion 4. We first prove  tha t  h(1, 2) ~< he 
for  any conf igura t ion  o f  the field points .  Then,  by mak ing  use o f  the max-flow, 
min-cut  theorem,  we exhibi t  conf igura t ions  where hr takes values a rb i t ra r i ly  
close to A(1, 2). In  Sect ion 5, upper  and lower bounds  for  I?(r) are  deduced  

f rom the lower  and upper  bounds  for  hr. In  Sect ion 6, we give sufficient 
condi t ions  for  a 2-graph with Debye -Ht i cke l  lines to be divergent.  A first 
type o f  cond i t ion  is ob ta ined  by requi r ing  tha t  the upper  b o u n d  decays more  

rap id ly  at large distances than  the lower bound.  A second type is ob ta ined  
by observing when the lower b o u n d  can become infinite. In  Section 7, we 
general ize the preceding results to 2-graphs with lines ( e - r / r ) L  with a real,  

posit ive.  

2. D E F I N I T I O N S  A N D  N O T A T I O N S  

2.1. De f in i t ion  of  a 2 -Graph  

A 2-graph 5 is a mul t ip le  in tegral  of  the  fol lowing type (9,1o~: 

F ( r l ,  r2) = f I - I  fL(r,,  rj) dr3 ... dr~ +2 (4) 
JA ~0 ~ L~o~P 

4 Deutsch et al. <8~ call this quantity the degree of convection I of the graph. In Ref. 8, 
they corrected their initial results (7) to recover our e-Ar decay. Their argument is based 
on the assertion that A = x for bridge graphs (i.e., simple, irreducible graphs). This is 
nevertheless false, as can be seen in Fig. 3c. The two quantities K and ,~ are generally 
different, in the same way that the number of points and lines in a graph are generally 
different (although one can clearly have graphs with the same number of points and 
lines, and similarly graphs with the same local point connectivity ,~ and local line 
connectivity A). In fact, only the inequality K ~< A holds true. To see that their method 
cannot give upper bounds decaying like e -~r, it is sufficient to find a graph where all 
lines belong to all maximal sets of line-disjoint chains. So, the deletion of any line gives 
a graph with a local line connectivity equal to A - 1. The graph of Fig. 3c has this 
property. We prove in this paper that it decays exponentially like e -3r, because ,~ = 3. 
But the pinching procedure of Deutsch et al. gives an upper bound which is a sum of 
graphs, where at least one of them has one line less. So, even if their bounding pro- 
cedure could be corrected, their bound could not decay faster than e-2, anyway. 

5 This is usually called a graph with two root points, or a two-rooted graph. In our 
work, we must make a clear distinction between a graph and the multiple integral it 
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where the symbols have the same meaning as in the first paper of this series. (~~ 
We recall them briefly. F is a graph with two root points, k field points, and 
l lines L joining the points i and j.  The set of lines of F is denoted by -~P. 
In (4), the product runs over all lines of ~ F ,  and the integration runs over 
the k field points varying in the infinite domain A~. 

2.2. Def in i t ion of  the fL and Notat ions of a 2 -Graph 

The problem that is investigated in this paper is to find, for large 
distances r12 between the root points, the asymptotic behavior of any 2- 
graph whose lines fL are powers of Debye-Htickel lines. This means that the 
fz are defined by the identity 

f~(ri, rj) = (e-'L/rL)~L (5) 

where rL denotes the distance between particles i and j :  

rL = Irk - r;l (6) 

Sometimes we will write r~j instead of rL. Note that the lines fL(r~, rj) are 
translation invariant, and so P(rl ,  r2) has the same property. This will usually 
be written 

r ( n ,  r2) = r(r~2) (7) 

If P is represented according to Mayer's convention, (11) we have kL = 1 
for any L, and F is a multigraph, i.e., it has k~j lines joining points i and j. 

If P is represented according to our convention, (9'1~ it has a single line 
L = (i, j )  joining points i and j. Moreover, to each line L is assigned the 
number kL, which is called the capacity of the line (kL is equal to the k~ of 
Mayer's representation). In the graphical representation of F, kL is written 
near the line L. (9'~~ 

To illustrate this, the 2-graph 7(r~2), defined by 

v(r12) = fa~ (e-r~3/rla)2e-~32/ra2 dra (8) 

has been represented in the two different ways in Fig. 1. In Sections 1-5, 
the kL will take only positive integer values. Although the two types of con- 

represents, and at the same time indicate explicitly how many root points or variables 
there are. We have chosen the names n-rooted graph for the graph-theoretical concept, 
and n-graph for its associated integral, because they satisfy both conditions and are 
sufficiently simple. Similarly, a graph is denoted by r and its associated integral by 
r(rl ..... r,). Note that a 1-graph is then denoted by F(rl), although it is independent of 
r l ,  
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(a) (b] 

Fig. 1. The 2-graph y(ri2) defined by Eq. 8 is represented here according to: (a) the usual 
Mayer convention(lZ>; (b) our convention. (9'1~ This latter one enables us to represent 
2-graphs whose integrand is a product of functions f"(r ,  rj), for any real positive a, while 
the Mayer convention can be used only if a is an integer. 

ventions can be used, we will represent 2-graphs according to Mayer ' s  con- 
vention, because it involves more  intuitive concepts and reasoning than ours. 
But in Section 7, we will consider 2-graphs where some kz can take non-  
integer values2 So, 2-graphs will then be represented according to our  con- 
vention, because it is the only one possible in this case. 

2.3. Def in i t ion of  the  2-Graphs Studied 

Insofar  as we study each 2-graph individually, we can restrict ourselves 
to those that  are simple irreducible. This is because any 2-graph can be 
factorized into a product  o f  1-graphs and simple, irreducible 2-graphs by 
the usual theorems of  integration in coordinate space31~ Simple, irre- 
ducible 7 2-graphs occur in the development o f  the potential o f  mean force 
w(r) in powers o f  the density p.~12~ Some examples are given in Fig. 2. 
Finally, we could also restrict ourselves to simple irreducible 2-prototypes ~1~ 
(a 2-prototype is a 2-graph where each field point  has a degree equal at least 
to three). But it is unnecessary to impose this restriction before Section 6. 

6 In the Mayer developments of the distribution functions, there are only 2-graphs with 
integer kz. Nevertheless, we are also interested in 2-graphs with noninteger kL, because 
we will need upper bounds of such 2-graphs to obtain improvements of (31) and (32). 
This will be the subject of a subsequent paper. 

v A two-rooted graph is irreducible if each field point belongs to a chain of field points 
linking the root points. An irreducible two-rooted graph is simple if each pair of field 
points is linked by a chain of field points, t12~ A 2-graph is irreducible if its associated 
two-rooted graph is irreducible. 

Fig. 2. The 2-graphs (a) and (b) are simple, 
irreducible. (c) is reducible because it has ~ - ~  / / ~  
an articulation point, and (d) is irreducible ~c) O ~  (d) 
but not simple because the root points 
form an articulation set. 
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2.4. A Useful Homogeneity Relation 

Let us suppose for now that we have taken in (4) the lines fL(r~, rj) = 
e-"r,~/r~j instead of (5). Let us then denote the corresponding 2-graph, de- 
fined in (4), by r(r~2; a) to indicate explicitly that it depends on ~. This 
enables us to write down the following homogeneity property m: 

Lemma 2.1. One has the identity (provided the integral converges) 

P(r,2; a) = .'-akP(ar12 ; 1) (9) 

Here, l denotes the number of lines of F in the Mayer representation: 

l =  [~P[ = ~ kr (10) 
LeSt 

Note that this is also the total capacity of the graph, in our representation, 
defined as the sum of the capacities of all the lines of F, and where the 
capacity of a line e-~r/r is defined to be a. 

The relation (9) is obtained immediately by making the change of 
variables r, = a-  ~R,. A consequence of (9) is that there would be no gain of 
generality in studying the decay of 2-graphs with lines e-~r/r. 

3. Reformulat ion of r(r12) 

To find the exponential decay of F(r12), it is particularly convenient to 
express it in the form of an integral of Laplace's type. <13) To this end, let us 
regroup the exponentials together and set 

ri = rnR~ (11) 

With this change of variables, F(r~2) becomes, by the same homogeneity 
considerations as before 

F(r12) = rla~ -z exp(- r12 IRLI) ~ T-~L~dRa...dRk+~ (12) 
L r L ~ F  

We have set, as in (6), 

RL = Ri - Rj (13) 

where i and j denote the ends of line L. Notice that, by (11), the distance 
between the root points 1 and 2 is now 

IR121 = R z z  = 1 ( 1 4 )  

We have written explicitly the absolute values in (12) in order to make 
further developments clearer. 
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A useful result about  F(r12), which can be obta ined s t ra ight forwardly  
f r o m  its new form (12), is the following: 

k e m m a  3.1.  I f  F(r12) is not  infinite everywhere (i.e., if  there exists a 
certain ro such that  F(ro) < +oo), then F(r12) exists a for  any r12 /> ro and 
r[~a~F(r~2) is monotonica l ly  decreasing for  any rl 2 /> ro. 

This is a consequence of  the Lebesgue domina ted  convergence theorem.  (~4~ 

Romork  7. Looking  for  upper  bounds  for  a given 2-graph F(r~2) has a 
meaning only if the 2-graph itself is not  infinite everywhere.  So, we will 
suppose f rom now on that  there exists an ro such that  P(r0) < + oo. Therefore ,  
the preceding l emma  ensures that  the p rob lem we are interested in, namely  
looking for  the asymptot ic  decay of  F(r~2), has a meaning,  too,  whenever  
such an r0 exists, because F(rz2) is finite for  any r~2 sufficiently large. 

Romork 2. The question of  knowing whether  or  not  there exists such a 
point  ro will be considered in more  detail in Section 6. Let  us simply note  
here that  the set o f  2-graphs not  infinite everywhere is clearly not  void. For ,  
it contains the set o f  2-chains with any  number  of  field points,  and these 
2-chains are known to be finite. (~ 

3.1. Descript ion of the Laplace M e t h o d  

An integral of  Laplace 's  type reads, in one dimension,  ~13~ 

P b 

F(r)  = Ja e-rh~t~g(t) dt (15) 

and thus (12) indeed has a fo rm similar to (15). 
The crucial point  in the Laplace me thod  is that  for  large values of  r, 

only the ne ighborhood  of  to contributes to F(r),  where to is the point  where 
h([) reaches its min imum.  Therefore,  one has the asymptot ic  equivalence (z3~ 

F(r)  ~ e-r~%'[27r/rJh"(to)j]l/2g(to) (16) 

under  the following condit ions:  

(i) h(t) is twice differentiable in (a, b). 
(ii) h'(to) = O, h"(to) r O, a < to < b. 

(iii) h(t) > h(to), Vt r to (to is an absolute minimum).  
(iv) g(t)  is cont inuous in (a, b). 

8 We have not succeeded in proving that, if F(r12) exists for a given value ro, it exists for 
all r12 > 0. By Lemma 3.1, we would just need to prove that I~(e; 1) exists if I'(ro; 1) 
exists, for e < r0. This seems to be true, because divergences can come only from small 
distances R~j, and for such distances, we have exp(-roR~j) ~ 1 ~ exp(-eR,) .  Note 
that the homogeneity property (9) is of no help, because Rz2 is a fixed parameter in 
our problem. Here, we need only the weaker result given in Lemma 3.1, because we 
are interested only in the asymptotic behavior of I'(r~2). 
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We will say that the principal (or exponential) decay of P(r) is in e-r~(to ~, 
and that its complementary (or power) decay is in r-1/2. 

For multidimensional integrals, one has a formula quite analogous to 
(16), which gives both the principal and the complementary decay, if h(t) has 
an absolute minimum at a point to (t is now a multidimensional variable), as) 
and if the Hessian (15~ of h(t) is nonnull at to. Note that, for a different set of 
conditions, one can have formulas that differ from (16) by a power of r, (la) 
but the important point for us is that the factor e-rh(~o), that is, the principal 
decay of P(r), remains unchanged. 

3.2. Application to 2-Graphs with Debye-HOckel Lines 

The preceding considerations suggest that the principal decay of P(r12) 
ought to be determined by the minimum of the quantity 

hr(Ra ..... Rk§ = ~ IRLI (17) 

and this is what we are going to prove now. Unfortunately, it will be seen 
below that the minimum is not, in general, reached at a point, but on a set 
of points, so that it is not possible to get the complementary decay (see 
Section 3.1) of 1?(r12) with the usual formulas. To find this complementary 
decay, it would be necessary to find the set of points where the minimum of 
hr is reached. This is a more difficult problem and it will be investigated in a 
subsequent paper. Here, we look only for the principal decay of I"(r12). 
To solve this problem, we need only to find the value ~ of the minimum of 
hr. 

4. COMPUTATION OF THE M I N I M U M  t~ofhr  

Let us first note that h~.(Ra,..., Rk+2) is a finite sum of nonnegative 
continuous functions, and so its minimum/x does exist, is nonnegative, and 
is reached on a certain set of points A = Ao~ k. Having seen that p~ exists, 
we want now to prove: 

Theorem 4.1. The minimum/z of  hr(Ra,..., Rk+2)is equal to the local 
line connectivity A(1, 2) of F. 

,~(1, 2) is defined in the following way: 

Definition 4.1. The local line connectivity /10, 2) is equal to the 
maximum number of line-disjoint chains 9 (chains without lines in common) 
linking the root points t and 2. 

o A chain is a sequence of lines of the form (ix,/2), (i2, i3),..., (i~-z, ik), where all points 
are distinct. 
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(o) 

3 

(b) 0 (d) 0 

Fig. 3. Illustration of the local line connectivity k(1, 2). In the 2-graph (a) one has two 
line-disjoint chains, one made of the lines (1, 3) and (3, 2), and the other made of the lines 
(1, 4) and (4, 2). (b) represents a line-cutset of (a). It has two lines and so, by the max- 
flow min-cut theorem, the local line connectivity of (a) is equal to 2. In the 2-graph (c) 
one can find three line-disjoint chains, and the line-cutset (d) has three lines. Therefore, 
for (c) we have k(1, 2) = 3. 

This is illustrated in Figs. 3a and 3b. 
By virtue o f  the max-flow, min-cut  theorem, (16,17) the maximal  number  

o f  line-disjoint chains between 1 and 2 is equal to the minimal number  o f  
lines that  separate 1~ the roo t  points. Therefore, for the simplest 2-graphs, 
k(1, 2) can be computed  very easily. For,  suppose we have found a set o f  m 
line-disjoint chains; if we can find also a line-cutset with rn lines, the max- 
flow, rain-cut theorem ensures that  m = ,~(1, 2). Fo r  example, Figs. 3a and 
3b show that  k(1, 2) = 2, and Figs. 3c and 3d give ,~(1, 2) = 3. In the general 
case, there are known algorithms to compute  ;~(1, 2). ~6'~7) 

4.1.  L o w e r  B o u n d  f o r  

We have restricted our  study to simple, irreducible 2-graphs, and there- 
fore there is at least one chain going f rom point  1 to point  2. For  a given 
chain C, it is possible to write 

R12 = ~ RL (18) 
L~C 

where R~. was defined in (13) to be 

RL = R~ - Ri ,  L = (i, j )  

But, f rom (14), we have R12 = 1. S0, by applying the triangular inequality to 
(18), we obtain, for any chain C linking the roo t  points, 

lo A set of lines is said to separate the points 1 and 2 if their deletion gives two connected 
components, one of them containing the point 1 and the other the point 2. (18) A line- 
cutset is a set of lines that separate the root points. This latter definition is illustrated 
in Figs. 4c and 4d. 
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1 ~< Z IR~I (19) 
Le.LPC 

Let us now choose a maximal set of line-disjoint chains Ck. We have 
s n L,~ = ;~ for any pair of integers m and n, m r n. This enables us 
to write 

A(I.2) 

Z Z IR I = Z IR I (20) 
rn = 1 L~,.~Cm L e  U m.,~Cm 

But (19) shows that the lhs of (20) is bounded below by },(1, 2) and, because 
Um ~q~C,~ = ~ F ,  the rhs of (20) is bounded above by hr(R3 ..... R~+2). This 
gives the desired inequality: 

k(1, 2) ~< /~ (21) 

4.2. Upper Bound for [~ 

To prove the converse inequality A(1, 2) 1> /z, we need to use the max- 
flow, rain-cut theorem ~16,17~ (or Ford-Fulkerson theorem). As we already 
said, it tells us that the maximal number of line-disjoint chains between 1 and 
2 is equal to the minimum number of lines that separate 1 and 2. 

Let then c~ = {L1, L2 ..... La~l,2~} be a family of such lines. For  a given 
simple, irreducible 2-graph, this family is not void, because 4(1, 2) >t 1. We 
have then F - C = Pl u P2, with F~ and F2 disjoint (i.e., P~ n P 2 = ~).  
Moreover, one end of line L~ belongs to Pl ,  while the other belongs to F2. 
The line-cutset will be displayed by symbolizing F as shown in Fig. 4. 

Let us now call i~,A .... the points of F1, and i2, j2 .... the points of P2. 
We can realize the abstract graph F in the usual space Ra, by regrouping all 
the points of Pl in a sphere $1 centered at point 1 and with radius ,/, and all 
the points of F2 in a sphere $2 centered at point 2, with the same radius ~1. 
This is illustrated in Fig. 5. We have then 

IR~I - R~ I < ~ Vi~ e~P~ (22) 

]R~= - R2I < ~ Vi2 e ~a['2 (23) 

where ~ P  stands for the set of points of P. This gives immediately, by 
applying the triangular inequality 

LI 

(a) (b) 
Fig. 4. General structure of 2-graphs with a given local line connectivity. (a) ?,(1, 2) = 1. 

In this case we have an isthmus: the line (3, 4). (b))t(1, 2) = n. 
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S,~ S 2 

Fig. 5. A realization, in the real space R 3 of the 2-graph (c) of Fig. 3. 

[R,1 - ajar < 27 v i i , j 1  ~ ~ r l  (24) 

IR,2 - Rj2F < 27 vi2,A ~ ~r~. (25) 

1(Rq - Rj 2) - R121 < 2~7 Vii @,-~I~1, V j 2 ~ F 2  (26) 

These inequalities are valid for any pair of points, and thus afortiori  for all 
the lines of 17. 

As the subgraphs 171, 1~2, and cy have no line in common, and as their 
union gives b~ck V, we can split hv into three parts: 

hr : ~ [R~ 1 - Rj~[ + ~ IR,= - Rj2[ + ~ IR, z - Rj2[ (27) 
L~qoFI LEaP 2 L ~  

From the preceding inequalities, we see that the first two sums can be 
made negligible provided ~/is sufficiently small, and the last one is approxi- 
mately equal to A(1, 2)]Rld = h(1, 2). More precisely, we have 

]hv - A(1,2)IRld[ ~< 2.?(/1 + l~) + ~ [[R,~ - Rj~] - IRldl (28) 
L ~ . . ~  

where/1 and/2 stand, respectively, for the numbers of lines of I~1 and F2, and 
where the lines of W are denoted by (ia, J2). This gives 

Ih= - a(1, 2)] ~< 2l~7 (29) 

because of the identity l~ + 12 + A(1, 2) = 1. 
We have thus exhibited a set of points R3 ..... Rk+2, such that hv is 

arbitrarily close to ,~(1, 2). This proves that/~ ~< A(1, 2), and completes the 
proof of Theorem 4.1. 

We can see now that the minimum of hv is not, in general, reached at a 
point, but on a set of points. It is sufficient to consider the simplest irreducible 
2-graph, that is, a chain with two lines. We have then 

h~-(Rs) = IRI~I + IR3d (30) 
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4 5 8 

3 3 6 
(a) (b) 

I 3 2 3 8 2 
: > �9 ~. 

t . x / ~  4 Y 4 7 6 Y 

It) (d) 

Fig. 6. The minimum of he is reached on a set of points for the 2-graph (a) and at a 
single point for (b). The realizations in the real space of the 2-graphs (a) and (b) when hr 
is minimum are given respectively in (c) and (d). 

and the minimum [Rz21 of hr is reached when Ra belongs to the segment of 
the line that joins the root points (in Na). For the 2-graph of Fig. 6a, the 
minimum is reached when Ra and R4 come to the same point on the pre- 
ceding segment. Note nevertheless tha t / ,  can be reached sometimes at only 
one point, as in Fig. la or in Fig. 6b. In the latter case, he reaches its mini- 
mum at the point (R1, R, ,  R1, R2, R2, R2). 

5. A S Y M P T O T I C  BEHAVIOR OF A GENERAL 2 -GRAPH 
WITH DEBYE-HUCKEL LINES 

The main theorem we will prove now is the following: 

T h e o r e m  5.1. A given irreducible 2-graph F(r12 ) with l lines e-T/r, k 
field points, and a local line connectivity equal to 2,, has tSe following upper 
and lower bounds: 

F(r12) < F(ro)CM(ro)r~-le-~T12, Vr12 > ro (31) 

Cm(r12)r{2ae-~T12 < F(r12), Vr12 > 0 (32) 

which are finite whenever F(r12) is not infinite everywhere. The C~(ro) and 
Cm(r12) are the finite quantities 

CM(ro) = r~- a~eXTo (33) 

Cm(r12) = C1(1, 1)C2(1, l)e-=a(l + 2r~Z) -a (34) 

C1(1, t) and Q(1, 1) are positive constants defined in Section 5.2, and r0 is 
an arbitrary, real, positive number, chosen such that F(ro) < +oo. 
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Remark. We have obtained only upper bounds, but not the exact asymp- 
totic decay, because the minimum of hr is not reached on a unique point, 
but on a set of  points, as we already noted. 

Before proving Theorem 5.1, let us first draw some consequences of  
this theorem: 

C o r o l l a r y  5.1. An irreducible 2-graph F(r12) with Debye-Hiickel  lines 
e-r/r  decreases exponentially like exp(-hr~2),  where h is the local line con- 
nectivity of r ,  provided F(r~2) is not infinite everywhere. Conversely, a 
2-graph that decreases exponentially like exp(-nr~2),  with n an integer, is 
made of two disjoint connected graphs F~ and I~2 linked by n lines, and which 
contain, respectively, the root-points I and 2 (see Fig. 4b). 

Proof. I'(ro)CM(ro) is a constant which depends only on I ~, but not on 
r12. Similarly, if we restrict ourselves to distances r~2 > ro', where r0' is any 
positive number, the lower bound (31) holds true with Cm(r~2) replaced by 
the positive constant C,,(ro'). So, this constant depends only on P, too. 
Finally, if I'(r~2) is not infinite everywhere, we can choose r0 such that the 
upper bound is finite. To prove the converse statement, it is sufficient to 
note that a 2-graph that decreases like e x p ( - n r )  must satisfy A --- n, and 
thus has the structure given in Fig. 4b, by the max-flow, min-cut theorem. 

We can see here that A is an integer, contrary to what had been pre- 
viously s ta ted)  ~ 

C o r o l l a r y  5.2. The irreducible 2-prototypes dominant at infinity 
decay exponentially like e -T and have at least one isthmus (see Fig. 4a). 

Proof. Irreducible 2-graphs satisfy the condition A 1> 1. Moreover, the 
class of 2-prototypes decaying exponentially like e - '  is not void, because it 
contains the class of 2-graphs made of alternating lines e - ' / r  and (e - ' / r )  2, 
considered by Mitchell, Ninham, and others. ~) Finally, a 2-graph decaying 
exponentially like e -~ has an isthmus, by Corollary 5.1. 

In a subsequent paper we will make use of  these corollaries to find the 
exact asymptotic behavior of  the 2-prototypes that are dominant at large 
distances. (19~ Now, we turn to the proof  of Theorem 5.l. 

lz In Refs. 7 and 8, Deutsch et al. also made use of a second method to find the asymptotic 
behavior of 2-graphs, different from the one described in footnote 3. They applied it 
to the simplest 2-graphs of order three and four in the plasma parameter, and found 
an asymptotic behavior in e-B'/r for these 2-graphs. But the B's that they obtain are 
noninteger, real numbers, which is impossible, by our Theorem 5.1. Their error comes 
from the fact that they Fourier transform F(r), and make use of the equivalence 
1 - a2k 2 ~ (1 + a2k2) -1. This relation is exact for small values of k, but intro- 
duces poles in the complex plane which do not belong to the Fourier transform of 
!7(r). This therefore gives an incorrect decay. The same type of reasoning is used in 
the Ornstein-Zernike theory for the correlation function h(r). Therefore, the ex- 
ponential decay that they obtain for h(r) could be incorrect, too, for the same reason. 
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5.1. Upper Bound for r(r) 
To obtain an upper bound for P(r) that decays exponentially like 

e -~,  we will exploit the inequality ~(1, 2) ~ hr. But if we try to introduce it 
directly into (12), we run into difficulties. These come from the infinite volume 
of integration, because the function 1/r is not integrable in it. To get around 
this difficulty, we take a convergence factor e-~o n with each nonintegrable 
factor I/R, where r0 is an arbitrary, positive number. In other terms, we 
rewrite (12) in the form 

r~-z fA  exp[-(r~2 - ro)hr] 1F-[ exp(-r~ (35) P(r12) 

Then, provided r~ 2 >/ ro, the theorem of the means ~2o) gives 

r3k-Ze -ar~ r~o-3ke~oF(ro), Vr12 > ro (36) F(r12) ~< 12 

This proves the rhs inequality in (31), with CM(ro) = r~-3~e~o. To conclude 
the proof, we can choose ro such that F(ro) is finite. This is possible, because 
we assumed at the beginning that F(r) is not infinite everywhere. Therefore, 
the upper bound (31) is finite, too. 

5.2. Lower Bound for r ( r )  

To obtain a lower bound for P(r) that decreases exponentially like e -~r, 
we will take advantage of inequality (29). We are thus led to restrict the 
domain of integration to the domain of validity of this inequality. This gives 
actually a lower bound on P(r) because its integrand is positive. We have 

P(r12) /> r 8~-~ exp[-hr~2(1 +2~)] 
12 (1 + 2V) a C1(~, r:z)C2(v, r12) (37) 

C1(~, r12) stands for the contribution of the points R~ 1, Rjl ,... with domain 
restricted to the sphere $1('~): 

C1(~, r12) = f 1--[ exp(--rl=lRL[) d ~  ..-dRjl (38) 

Similarly, C2(~1, r12) is defined by replacing, in (38), $1(~7) and ~ I "  1 by $2(~) 
and LfI' 2 . 

For the lower bound (37) to have the required behavior at infinity, we 
can choose ~ = ri-21. Then, by homogeneity considerations, we obtain 

C1(r~21, r12) = r~�89 3~C1(1, 1) (39) 

where/1 and kl stand, respectively, for the number of lines and field points 
of r l .  By putting this relation into (37), and making use of the relations 
k = kl + k2 and l = /1 + 12 + h, we obtain the following lower bound, 
valid for any r12: 
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P(r12) >/ Cm(r12)r{2ae -~r12 (40) 

with C~(r~2) defined by (34). This completes the p roo f  o f  Theorem 5.1. 

5.3. An Improved Lower Bound 

We can improve (32) by making use of  all possible line-cutsets between 
the root  points, provided we restrict ourselves to distances r~2 > 2. 

T h e o r e m  5.2.  We have the lower bound  

Cm(~)rZ2 ve-vr12 ~< P(rl2),  r12 > 2 (41) 

with 
Cm(g') = Q(~)C2(~')e-2~2 -~ (42) 

where the sum in (41) runs over all possible line-cutsets cg o f  P, and v is the 
number  o f  lines in g'. Here CI(cg) denotes the r ight-hand side o f  (38), where 
P,  is the connected par t  o f  P - cg that  contains the roo t  point  1. 

Proof. Let us consider any given line-cutset ~f with u lines (v 1> A). It 
induces a parti t ion of  the field points into two sets ~ITz(C~) and ~F2(C~), and 
a subset a(cg) o f  A= k, by the procedure described in Section 4.2. We define 
e(cg) to be 

a(c~) = { (R3, . . . ,  R~+2)Ji a gF~(qY) ~ R~ ~ $1 ,  i ~ ~ F 2 ( ~ )  ::> R, ~ $2} 

But, for ra2 > 2, we have e(fY~)n a(c~j) = ;~ for  two different line-cutsets 
% and cgj, because $1(r~2 ~) and $2(r~21) are disjoint. This implies that  the 
integral in Aoo k is larger than the sum of  the integrals in the subdomains  
~(%). Therefore we obtain (40) by the same reasoning that  was used in the 
preceding subsection. 

6. DIVERGENT 2-PROTOTYPES 

F r o m  now on, we will make use o f  our  conventions to represent 2- 
graphs. 

It  is well known that  a 2-graph with lines f z ( r )  = (e-T/r)~L is divergent 
if one of  thefL is nonintegrable, i.e., ifkL /> 3. I t  is less obvious that  2-graphs 
with integrable lines (kz < 3 for any L) can also be divergent, but  this is 
nevertheless true. 12 We will show this as an application o f  Theorem 5.1. 

12 We exhibit here divergent 2-graphs that occur in the Abe-Meeron theory of ionized 
systems. Cohen and Murphy have also met divergences m when computing certain 
2-graphs that occur in this theory. But the 2-graphs that they compute are convergent, 
as one can see by applying the method we developed elsewhere, (9'I~ and which gives 
upper bounds for general n-graphs. The divergences that they observe mean that their 
method of computation, which makes use of a development of B(k) [the Fourier 
transform of B(r)] in a double series of �9 and In e, is not valid for high orders in 
and In ~. This is probably because developing B(k) in powers of e and In E amounts 
more or less to developing B(r) in powers of e, which gives back, for high orders in e, 
the nonintegrable lines (e-r/r) ~, n ~ 3. 
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This implies that the Abe-Meeron (3~ development of w(r) contains divergent 
2-graphs, although all the divergences comirtg from nonintegrable lines have 
been removed. This implies also that further resummations would be needed 
to take care of these divergent 2-graphs. But we will not study this problem 
here. 

Let us then consider 2-graphs with lines fL(r) = e-T/r (i.e., kL = 1 for 
any L). Such 2-graphs belong to the Abe-Meeron development of w(r) if 
these are, moreover, simple, irreducible 2-prototypes. ~2,3~ We are now going 
to prove: 

T h e o r o m  6.1. A sufficient condition for a 2-graph with Debye- 
Hfickel lines to be divergent is that 

l > 3k + A (43) 

For any k > 5, there are simple, irreducible 2-prototypes satisfying this 
condition. 

ProoL The lower bound (32) cannot decay less rapidly at large distances 
than the upper bound (31). This implies that 

l -  3k ~< ~ (44) 

If  this condition is not satisfied, the inequality (31) can hold only if F(ro) is 
infinite. But ro is arbitrary, and then F(rl~) is infinite for any r12. In other 
words, a sufficient condition for F(r12) to be divergent is that (43) holds. To 
construct such divergent 2-prototypes for any k, let us note that, according 
to (43), they must have a sufficiently large number of lines. We can consider, 
for example, a 2-graph with k field points, and the maximum number of 
lines, that is, 

l = �89 + 2)(k + 1) - 1 (45) 

This is clearly a simple, irreducible 2-prototype, because each field point 
has a degree larger than two for k >/ 2. [And then the associated 2-graph 
obtained by taking fL(r) = e-r/r for any L actually occurs in the Abe-  
Meeron development of w(r), as we already noticed.] Moreover, we have also 

(a) (b) 
Fig. 7. Two examples of divergent 2-graphs. (a) / = 20, k = 6, 3. = 1. (b) l = 25, k = 6, 

3.=6. 
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A = k. By the relation (44), we thus see that I '(r) is divergent whenever k > 5, 
although all its lines are equal to e-~/r and therefore are integrable. We give 
some examples of divergent 2-prototypes in Fig. 7. 

The lower bound (32) enables us also to conclude that a given 2-graph 
is divergent if it contains subgraphs that are known to be divergent. 

Theorem 6.2. If  there is a cutset cg such that one of the components 
of P - ~' is divergent, then I'(rl~) is divergent. 

Proof. The idea consists in finding a lower bound for C1(1, 1) by means 
of I'l(rl). From (39), we have 

Ca(c~, a -L) = dl-aklc~(1, 1) (46) 

for any a. Moreover, if a > 1, we have also 

Ca(a, 1) < Ca(a, a -L) (47) 

because of the inequality e x p ( - R ) <  e x p ( - a - a R ) .  But, for increasing 
values of a, Ca(a, 1) increases monotonically to Fl(rl), if this quantity exists 
(by the Lebesgue dominated convergence theorem (1~)). So, to a given e > 0, 
we can associate an aa > 0 such that 

C1(~, 1) > (1 - e)Pl(rl), gc~ > % (48) 

By combining (34) with (46)-(48), we find 

Cm(r~2) > Pl(r~)P2(r=)Cm'(r~2) (49) 

with 

Cm'(r~2) = =}-a~*@-a~(1 - e)=e-2a(1 + 2ri-~) -a (50) 

This proves Theorem 6.2 for a given minimal line-cutset g. The proof  
for any line-cutset is a consequence of our improved lower bound (41). 

In this section, we have proved that there are irreducible 2-graphs with 
Debye-Hiickel lines that are infinite everywhere. This brings us to make some 
remarks. 

Remark 1. The divergences that we found were detected by looking at 
the behavior of 2-graphs at large distances, but it is clear that these di- 
vergences come from the short distance behavior of the Debye-Hiickel 
function, as was already mentioned in footnote 8. 

Remark 2. Our upper bound (31) solves completely the problem of 
finding upper bounds finite at large distances, for any 2-graph that is not 
infinite everywhere. A distinct but important problem is to know whether a 
given 2-graph is finite or infinite. This is a very difficult problem, which we 
were able to avoid, thanks to the factor P(ro) in (31). The results of  this 
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section give yet a partial answer to this problem, by displaying an infinite 
class of irreducible 2-graphs that are infinite everywhere. But these results 
are by no means able to  give a complete solution to this problem. In partic- 
ular, these cannot enable us to find the whole set of  infinite 2-graphs, nor to 
find any finite one. Completely different techniques must be developed to 
prove that a given 2-graph is finite. We have developed such a technique 
elsewhere. (9,1~ By means of this technique, we have been able, for example, 
to prove that a 2-graph r(r) with l lines and k field points is finite if l < 3k 
{it is bounded by [f (e-T/r) zlk dr] ~ < +oo}, provided P can be uniformly 

covered 13 by a set of  spanning two-rooted trees? 4 This enabled us to find an 
infinite class of  2-graphs that are finite. 

Remark 3. The results of this section show that the " b o u n d s "  of  
Deutsch et al. can happen to be infinite even if F(r) is finite, because these 
are sums of 2-graphs that are different from P(r). On the contrary, our bound 
(31) is finite whenever r ( r )  is not infinite everywhere, because this bound 
makes use of P(r) itself. 

. GENERALIZATION TO 2-GRAPHS WITH NONINTEGER 
POWERS OF DEBYE-HUCKEL LINES 

Let us first rewrite P(r12) when P is represented according to our con- 
vention: 

= dR3 .-. dRk+2 (51) 
~k L ~ P  

hr is now defined by the identity 

hr(R3,...,Rk+2) = ~ kLIR~I (52) 

In the preceding sections, the kL were all integers. We showed that the expon- 
ential decay of F(r12) is determined by the minimum of hv, which is equal 
to the local line connectivity A(1, 2) of P. We now want to extend this result 
to the case where the kL can take real values. To this end, we prove that the 
minimum tt of hr is equal to a straightforward generalization of A(1, 2), 
namely the maximal flow <16) between the root points 1 and 2, in a network 
N F  associated with F. 

13 A graph is covered by a set of subgraphs if their union is equal to the graph itself. 
A covering is uniform if each line of the graph belongs to the same number of sub- 
graphs. 

14 A spanning two-rooted tree of a graph F is a subgraph that contains all the points of 
F and that is made of two disjoint trees, each one containing one root point. 
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In fact, we could even avoid introducing the notion of flows in networks 
by reducing the computation o f / z  for real kL to the computation of the 
minimum of a new function Hr  with integer kz. To this end, we have just 
to approximate each kL as closely as we want by a fraction, and then reduce 
all of them to the same denominator. We obtain in this way an approxi- 
mation to/z as precise as we want. Nevertheless, we have chosen to make use 
of flows because they arise quite naturally, without introducing any auxiliary 
function or limiting process. This enables us also to use known algorithms to 
compute/z  (Ref. 16, pp. 17-18). On the other hand, this brings some extra 
complications in the notation, and forces us to give some new definitions 
tha t  we will need later. 

D e f i n i t i o n  7.1. A directed network is a set of points i,j,.., together 
with a set of  ordered pairs (i, j )  of  points, referred to as arcs. 

To each graph F, we can now associate a network N F  in the usual way 
(Ref. 16, p. 23): each (undirected) line of F gives rise in N P  to a pair of 
oppositely directed arcs, each having capacity equal to the old line. An arc 
A = (i, j )  is depicted by a line joining i and j, and an arrowhead oriented 
toward j (Fig. 8). The set of arcs of NF  is denoted by a lP .  

D e f i n i t i o n  7.2. A flow of value v from the root points 1 to 2 in NU is 
a f u n c t i o n f f r o m  ~r to nonnegative reals that satisfies the linear equations 
and inequalities (Refl 16, p. 4) 

f (A ) -  ~ f(A)= i #  1,2 (53) 
a~,o �9 (i) n~m- (t) - i = 2 

0 <~ f (A)  <~ ka for all A E d F  (54) 

where w +(i) denotes the set of all arcs issuing from point i: 

oJ+(i) = {A = (i,j), j ~ i ' }  (55) 

and similarly, oJ-(i) denotes the set of all arcs going to i: 

o~-(i) = {A ~ d r l A  = (j, i), j e e r }  (56) 

NP=~ (o) 

o % =o % (b) 
Fig. 8. (a) Construction of the network NF associated to the 2-rooted graph I'. (b) Two 

examples of arc-cutsets. Only the arc-cutset C1 is minimal. 
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The definition of a line-cutset of a graph extends straightforwardly to a net- 
work: 

De f in i t i on  7.3. An arc-cutset (or cut) in N F  separating the root points 
denotes the set of all arcs that lead from X to a point not belonging to X, 
where X is a set of points containing the root point 1, but not 2. 

De f in i t i on  7.4. The capacity of an arc-cutset c~ is the sum of the 
capacities of all the arcs of c~. 

We will denote by ,~(1, 2) the minimal capacity of all arc-cutsets separat- 
ing the root points. 

7.1. Computation of  the Minimum Ix o f  hr 

From the definition of an arc-cutset and the construction of Section 4.2, 
we see immediately that/~ is smaller than or equal to the minimal capacity 
~(t, 2): 

/~ ~< A(1, 2) (57) 

To prove the converse inequality, we first note that the minimal capacity 
A(1, 2) is equal to the maximal flow from 1 to 2 in Nil, by the max-flow, 
rain-cut theorem. Then, we show that/~ is larger than or equal to the maximal 
flow A(1, 2). To this end, we will express flows in arc-chain form (Ref. 16, 
p. 7). 

L e t f b e  a maximal flow of value A(1, 2), expressed in the usual node-arc 
form. We will require tha t fvanishes  on one of the two oppositely directed 
arcs associated to the line L, for each L. We know that this is possible (Ref. 
16, p. 23). We know also (Ref. 16, Lemma 2.1) that if f is a node-arc flow 
from 1 to 2 having positive value v(f),  then there is an oriented chain from 
1 to 2 such that f > 0 on all arcs of the chains. Let us call this chain C1, 
and h(C~) the maximal admissible flow in C~ (Ref. 16, p. 7): 

h(C~) = min f (A)  (58) 
A~C I 

We have h(C1) <<. v(f), because v(f)  is maximal. Moreover, the quantity 
f~(A), defined by 

]'1(/1) = f (A)  - aA~h(C~) (59) 

(where aA1 is equal to 1 if A e C1 and is zero otherwise), is a flow (Ref. 16, 
p. 7). If  h(C1) = v(f), we have found a flow in arc-chain form which is equal 
to 2,(1, 2). If h(C1) < v(f),  the flow f~ has positive value and we can iterate 
the preceding algorithm. As there is a finite number of chains from 1 to 2, 
we will end up in a finite number of steps with a chain Cm+~ satisfying the 
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equality h(Cm+ 1) = v(fm), where fm is the flow obtained after the mth iter- 
ation. In other terms, we have found m + 1 oriented chains going from 1 to 
2, such that 

m+l. 

x~, h(C~) = A(1, 2) (60) 
t = l  

m + l  

f(A) = ~ amh(C,) (61) 
l = l  

where a~ is equal to 1 if A ~ C~, and is zero otherwise. 
Let us now write 

R12 = ~ RA = ~ amRA (62) 
A~C~ A e , ~ P  

where RA denotes the quantity R~ - Rj, i a n d j  being the end points of arc A. 
By applying the triangular inequality to (62), summing over i, and making use 
of (61), we get 

A(1, 2) ~< ~ f(A)[RA] (63) 
A~,.cJF 

But the flow satisfies the constraints (54) and, moreover, to each line L is 
associated at most one arc with a strictly positive flowf(A). This implies that 
the rhs of (63) is majorized by the quantity ~ L ~ v  kL]RL[ - hr and so we 
obtain the desired inequality: 

A(1, 2) ~ p. (64) 

By combining this iiiequality with (57), we get: 

L e m m a  7.1. The minimum tL of hv is equal to the maximal flow 
A(1, 2) in NF. 

7.2. Upper and Lower Bounds for r ( r )  

Theorem 5.1 extends immediately into the following: 

Theorem 7.1. A given irreducible 2-graph P(r12) with lines fL(r) = 
(e-T/r)kL and k field points has the same upper and lower bounds as in 
Theorem 5.1, provided the definitions of l, A, and C~(1, 1) are modified in 
the following way: 

(i) l now stands for the total capacity of F: l = ~L~.~r kL. 
(ii) A stands for the maximal flow in the network N F  obtained from P 

by replacing each line with a pair of oppositely directed arcs, each 
having capacity equal to the old line. 

(iii) C1(1, 1) is obtained by replacing [RL[- 1 by IRz[-~L in (38). 
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Finally, the sufficient condition (43) for a 2-graph with linesfL(r) = (e-~/r)~L 
remains unchanged, with these definitions of l and ;k 

8. D ISCUSSION A N D  C O M M E N T S  

We have shown the fundamental importance of the local line connec- 
tivity ~ for the asymptotic behavior of 2-graphs in the case of the one- 
component plasma. This is in fact fairly general. For example, we have 
proved also (6) that 2-graphs with lines fL(r ) ' "  r -~L, which occur in the 
theory of neutral systems, decay like r-a. 

But we would like to emphasize here that it is in the case of the OCP 
that the local line connectivity arises in the most simple and natural manner. 
To illustrate this point, we need only to remark that it takes just two lines to 
prove that a 2-graph decays exponentially at least as fast as e-T. The first line 
consists in writing Eq. (35), which reexpresses I'(r12) in a form most con- 
venient for our purpose, by displaying the quantity hr and the absolutely 
integrable factor I--t [exp(-r01RL[)]/IRL[. The second line reads 

1 ~< ~ IR~I < hr, 
Les 

which is an immediate consequence of the existence, in an irreducible 1- 
rooted graph, of at least one chain linking the root points. Finally, to prove 
t h a t a  1-graph decays exponentially at least as fast as e -~r, we need only, in 
a third step, to extract from hr as many quantities ~ L ~ c  [RT.[ as possible. 

Such simplicity no longer exists in the case of neutral systems, and the 
proof is much more opaque. This is mainly because one cannot isolate any 
absolutely integrable factor from the integrand of P(r12) without weakening 
the decay of the upper bound. 

On the other hand, in the case of the OCP, we have been able to obtain 
only upper and lower bounds because the minimum of hr is not reached, in 
general, at a point, but at a set of points. For neutral systems, on the con- 
trary, it is possible to go further and obtain the exact asymptotic behavior 
of r(r12), because the field points give a nonnegligible contribution only 
when they are in the vicinity of the root points. 

Finally, we mention that the results of this paper have been applied 
elsewhere (19) to justify the corrections (1) to the Debye length. 
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